Technique lets researchers grow nanosheets like never before - Opening a plethora of possibilities for novel nanomaterials

01/21/2016 - 22:15

Will Cushman


After six years of painstaking effort, a group of University of Wisconsin-Madison materials scientists believe their breakthrough in growing tiny sheets of zinc oxide could have huge implications for the future of nanomaterial manufacturing—and in turn, on a host of electronic and biomedical devices.

The group, led by Xudong Wang, an associate professor of materials science and engineering at UW-Madison, and postdoctoral researcher Fei Wang, has developed a novel technique for synthesizing two-dimensional nanosheets from compounds that do not naturally form the atomic-layer-thick materials. It is the first time such a technique has been successful, and the researchers described their findings 20, January, 2016, in the journal Nature Communications.

READ MORE ON PHYS.ORG

Ref: Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nature Communications (20 January 2016) | DOI: 10.1038/ncomms10444 (Open Access) | PDF

ABSTRACT

To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water–air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.